4535 reflections with $I > 2\sigma(I)$

intensity decay: 1%

2 standard reflections every 120 min

 $R_{\rm int} = 0.022$

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

1-Phenylpiperazine-1,4-diium bis(hydrogen sulfate)

Houda Marouani,^a* Mohamed Rzaigui^a and Salem S. Al-Deyab^b

^aLaboratoire de Chimie des Matériaux, Faculté des Sciences de Bizerte, 7021 Zarzouna Bizerte, Tunisia, and ^bPetrochemical Research Chair, College of Science, King Saud University, Riadh, Saudi Arabia Correspondence e-mail: houda.marouani@fsb.rnu.tn

Received 9 September 2010; accepted 15 September 2010

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.003 Å; R factor = 0.046; wR factor = 0.127; data-to-parameter ratio = 35.3.

In the title compound, $C_{10}H_{16}N_2^{2+}\cdot 2HSO_4^{-}$, the S atoms adopt slightly distorted tetrahedral geometry and the diprotonated piperazine ring adopts a chair conformation. In the crystal, the 1-phenylpiperazine-1,4-diium cations are anchored between chains formed by the sulfate entities *via* intermolecular bifurcated N-H···(O,O) and weak C-H···O hydrogen bonds. These hydrogen bonds contribute to the cohesion and stability of the network of the crystal structure.

Related literature

For pharmacological properties of phenylpiperazine, see: Cohen *et al.* (1982); Conrado *et al.* (2008); Neves *et al.* (2003). For related structures, see: Ben Gharbia *et al.* (2005). For a discussion on hydrogen bonding, see: Brown (1976); Blessing (1986). For structural discussion, see: Arbuckle *et al.* (2009). For puckering parameters, see: Cremer & Pople (1975).

Experimental

Crystal data

 $\begin{array}{l} C_{10}H_{16}N_{2}^{2+}\cdot 2HSO_{4}^{-}\\ M_{r} = 358.38\\ \text{Monoclinic, } P2_{1}/c\\ a = 17.535 \ (6) \ \text{A}\\ b = 10.996 \ (2) \ \text{Å}\\ c = 7.631 \ (2) \ \text{Å}\\ \beta = 99.86 \ (2)^{\circ} \end{array}$

 $V = 1449.7 (7) Å^{3}$ Z = 4 Ag K\alpha radiation \lambda = 0.56083 Å \mu = 0.22 mm^{-1} T = 293 K 0.5 \times 0.4 \times 0.1 mm Data collection

```
Enraf–Nonius CAD-4
diffractometer
8212 measured reflections
7100 independent reflections
```

Refinement

$$\begin{split} R[F^2 > 2\sigma(F^2)] &= 0.046 & 201 \text{ parameters} \\ wR(F^2) &= 0.127 & H\text{-atom parameters constrained} \\ S &= 1.03 & \Delta\rho_{\text{max}} &= 0.43 \text{ e} \text{ Å}^{-3} \\ 7100 \text{ reflections} & \Delta\rho_{\text{min}} &= -0.46 \text{ e} \text{ Å}^{-3} \end{split}$$

Table 1			
Hydrogen-bond	geometry	(Å,	°).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$O1-H1\cdots O3^i$	0.82	1.80	2.6140 (17)	172
O5−H5···O7 ⁱⁱ	0.82	1.80	2.6066 (18)	169
$N1-H1A\cdots O2^{iii}$	0.90	2.23	2.8636 (19)	128
$N1 - H1A \cdots O3^{iv}$	0.90	2.30	3.0279 (19)	138
$N1 - H1B \cdots O3$	0.90	2.14	2.9251 (18)	145
$N1 - H1B \cdot \cdot \cdot O2^{i}$	0.90	2.35	2.9892 (18)	128
$N2 - H2 \cdots O7$	0.91	2.02	2.8216 (16)	146
$N2-H2\cdots O6^{ii}$	0.91	2.32	2.9037 (17)	122

Symmetry codes: (i) $x, -y + \frac{3}{2}, z - \frac{1}{2}$; (ii) $x, -y + \frac{1}{2}, z + \frac{1}{2}$; (iii) $-x + 2, y - \frac{1}{2}, -z + \frac{3}{2}$; (iv) -x + 2, -y + 1, -z + 1.

Data collection: *CAD-4 EXPRESS* (Enraf–Nonius, 1994); cell refinement: *CAD-4 EXPRESS*; data reduction: *XCAD4* (Harms & Wocadlo, 1995); program(s) used to solve structure: *SHELXS86* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-32* for Windows (Farrugia, 1998); software used to prepare material for publication: *WinGX* (Farrugia, 1999).

We would like to acknowledge the support provided by the Secretary of State for Scientific Research and Technology of Tunisia.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PV2328).

References

- Arbuckle, W., Kennedy, A. R. & Morrison, C. A. (2009). Acta Cryst. E65, 01768–01769.
- Ben Gharbia, I., Kefi, R., Rayes, A. & Ben Nasr, C. (2005). Z. Kristallogr. 220, 333–334.
- Blessing, R. H. (1986). Acta Cryst. B42, 613-621.
- Brown, I. D. (1976). Acta Cryst. A32, 24-31.
- Cohen, M. R., Hinsch, E., Palkoski, Z., Vergona, R., Urbano, S. & Sztokalo, J. (1982). J. Pharmcol. Exp. Ther. 223, 110–115.
- Conrado, D. J., Verli, H., Neves, G., Fraga, C. A., Barreiro, E. J., Rates, S. M. & Dalla-Costa, T. (2008). J. Pharm. Pharmacol. 60, 699–707.
- Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
- Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.
- Farrugia, L. J. (1998). ORTEP-32 for Windows. University of Glasgow, Scotland.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.
- Neves, G., Fenner, R., Heckler, A. P., Viana, A. F., Tasso, L., Menegatti, R., Fraga, C. A. M., Barreiro, E. J., Dalla-Costa, T. & Rates, S. M. K. (2003). *Braz. J. Med. Biol. Res.* 36, 625–629.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supplementary materials

Acta Cryst. (2010). E66, o2613 [doi:10.1107/S1600536810037001]

1-Phenylpiperazine-1,4-diium bis(hydrogen sulfate)

H. Marouani, M. Rzaigui and S. S. Al-Deyab

Comment

The phenylpiperazine and its derivatives have been intensively investigated recently owing to their interesting pharmacological, cardiovascular and autonomic properties (Conrado *et al.*, 2008; Cohen *et al.*, 1982; Neves *et al.*, 2003). We report here the preparation and the crystal structure of the title compound, (I).

The asymmetric unit of the title compound (Fig.1) consists of two HSO₄⁻ anions and a 1-phenylpiperazine-1,4-diium cation. The interatomic bond lengths and angles of the cation show no significant deviation from those reported in other 1-phenylpiperazinium salts such as $[C_{10}H_{16}N_2]_2ZnCl_4$ (Ben Gharbia, *et al.*, 2005). In the title compound, the distances S—O are significantly longer than the S=O distances as reported in the hydrogen sulfate ion previously (Arbuckle, *et al.*, 2009). The aromatic ring is essentially planar while the diprotonated piperazine ring adopts a chair conformation, with puckering parameters (Cremer & Pople, 1975): Q = 0.5913 (14) Å, $\theta = 178.61$ (15)° and $\phi = 76$ (5)°.

The atomic arrangement is characterized by infinite chains built by HSO_4^- anions. The inorganic chains, extending along the *c* direction, are located around planes perpendicular to the *a* axis at x = 0 (for $HSIO_4^-$) and x = 1/4, x = 3/4 (for $HS2O_4^-$). The hydrogen sulfate groups of the same type are interconnected *via* strong O—H···O hydrogen bonds (Table 1)[d (O···O) < 2.73 Å] (Brown, 1976; Blessing, 1986). Chains formed by HS1O₄ are linked by N1 nitrogen atom of the cation to form layers parallel to the *bc* plane at x = 0. Two chains of different type are bound between them by the cations through their two nitrogen atoms by means of the N—H···O hydrogen bonds (Fig. 2).

The cations are linked onto the anionic chains, by forming H-bonds with the oxygen atoms with N—H…O distances in the range 2.8216 (16)–3.0279 (19) Å and C—H…O distances in the range 2.949 (2)–3.520 (2) Å. It should be noticed that all the amino hydrogen atoms are involved in bifurcated N—H…(O, O) hydrogen bonding. These hydrogen bonds contribute to the cohesion and stability of the network of the studied crystal structure.

Experimental

Single crystals of the title compound were prepared at room temperature from a mixture of an aqueous solution of sulfuric acid (2 mmol), 1-phenylpiperazine (1 mmol), ethanol (10 ml) and water (10 ml). The solution was stirred for 1 h then evaporated slowly at room temperature for several days until the formation of good quality of prismatic single crystals.

Refinement

All H atoms were fixed geometrically and treated as riding with C—H = 0.93 Å (aromatic) or 0.97 Å (methylene), N—H = 0.90 Å or 0.91 Å and O—H = 0.82 Å with $U_{iso}(H) = 1.2U_{eq}(C \text{ or } N)$ or $1.5U_{eq}(O)$.

Figures

Fig. 1. An *ORTEP* view of (I) with the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radii.

Fig. 2. Projection of (I) along the c axis. H atoms non committed in H-bonds are omitted for clarity.

1-Phenylpiperazine-1,4-diium bis(hydrogen sulfate)

Crystal data

$C_{10}H_{16}N_2^{2+}$:2HSO ₄	F(000) = 752
$M_r = 358.38$	$D_{\rm x} = 1.642 {\rm Mg m}^{-3}$
Monoclinic, $P2_1/c$	Ag K α radiation, $\lambda = 0.56083$ Å
Hall symbol: -P 2ybc	Cell parameters from 25 reflections
a = 17.535 (6) Å	$\theta = 9-11^{\circ}$
b = 10.996 (2) Å	$\mu = 0.22 \text{ mm}^{-1}$
c = 7.631 (2) Å	T = 293 K
$\beta = 99.86 \ (2)^{\circ}$	Prism, colorless
$V = 1449.7 (7) \text{ Å}^3$	$0.5\times0.4\times0.1~mm$
Z = 4	

Data collection

Enraf–Nonius CAD-4 diffractometer	$R_{\rm int} = 0.022$
Radiation source: fine-focus sealed tube	$\theta_{\text{max}} = 28.0^{\circ}, \ \theta_{\text{min}} = 2.4^{\circ}$
graphite	$h = -3 \rightarrow 29$
non–profiled ω scans	$k = -18 \rightarrow 0$
8212 measured reflections	$l = -12 \rightarrow 12$
7100 independent reflections	2 standard reflections every 120 min
4535 reflections with $I > 2\sigma(I)$	intensity decay: 1%

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring sites
H-atom parameters constrained
$w = 1/[\sigma^2(F_o^2) + (0.0603P)^2 + 0.1738P]$ where $P = (F_o^2 + 2F_c^2)/3$
$(\Delta/\sigma)_{\rm max} = 0.001$
$\Delta \rho_{max} = 0.43 \text{ e} \text{ Å}^{-3}$
$\Delta \rho_{min} = -0.46 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates an	d isotropic or eq	uivalent isotropic d	lisplacement	parameters ((A^2))
	, , ,	4				_

	x	У	Z	$U_{\rm iso}*/U_{\rm eq}$
S1	0.958198 (19)	0.80824 (3)	0.59663 (4)	0.02129 (8)
S2	0.68841 (2)	0.18262 (3)	0.36929 (5)	0.02431 (8)
07	0.66990 (8)	0.31003 (10)	0.32493 (15)	0.0332 (2)
03	0.97861 (7)	0.68051 (10)	0.64169 (14)	0.0306 (2)
N2	0.73629 (7)	0.53363 (10)	0.45259 (15)	0.0215 (2)
H2	0.7163	0.4579	0.4607	0.026*
O2	0.97180 (7)	0.88315 (10)	0.75428 (14)	0.0295 (2)
N1	0.89625 (7)	0.46159 (12)	0.49684 (18)	0.0273 (2)
H1A	0.9333	0.4041	0.5136	0.033*
H1B	0.9194	0.5342	0.4913	0.033*
01	1.01876 (7)	0.85308 (12)	0.48419 (14)	0.0355 (3)
H1	1.0036	0.8368	0.3791	0.053*
O4	0.88248 (7)	0.81856 (12)	0.49109 (16)	0.0366 (3)
O5	0.63020 (7)	0.13868 (12)	0.48817 (15)	0.0356 (3)
Н5	0.6438	0.1639	0.5898	0.053*
O6	0.67139 (8)	0.10676 (11)	0.21389 (16)	0.0371 (3)
C3	0.79171 (8)	0.55729 (14)	0.62253 (19)	0.0258 (3)
H3A	0.7639	0.5567	0.7220	0.031*
H3B	0.8152	0.6368	0.6173	0.031*
C2	0.77975 (9)	0.53263 (14)	0.29912 (19)	0.0266 (3)
H2A	0.8023	0.6122	0.2876	0.032*
H2B	0.7442	0.5155	0.1900	0.032*
C5	0.67057 (8)	0.61993 (13)	0.42348 (19)	0.0244 (3)
C1	0.84293 (8)	0.43819 (14)	0.3260 (2)	0.0284 (3)

supplementary materials

H1C	0.8203	0.3578	0.3284	0.034*
H1D	0.8716	0.4412	0.2281	0.034*
C4	0.85375 (9)	0.46091 (15)	0.6493 (2)	0.0293 (3)
H4A	0.8895	0.4765	0.7588	0.035*
H4B	0.8304	0.3817	0.6588	0.035*
O8	0.76519 (7)	0.17042 (14)	0.47005 (18)	0.0465 (3)
C10	0.68447 (10)	0.74340 (14)	0.4204 (3)	0.0346 (3)
H10	0.7348	0.7735	0.4384	0.042*
C6	0.59670 (9)	0.57280 (16)	0.3966 (2)	0.0347 (3)
H6	0.5887	0.4892	0.3987	0.042*
C9	0.62142 (12)	0.82154 (17)	0.3896 (3)	0.0468 (5)
Н9	0.6293	0.9051	0.3871	0.056*
C8	0.54742 (13)	0.7761 (2)	0.3629 (3)	0.0532 (5)
H8	0.5055	0.8291	0.3422	0.064*
C7	0.53462 (10)	0.6521 (2)	0.3664 (3)	0.0489 (5)
H7	0.4843	0.6221	0.3485	0.059*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U ³³	U^{12}	U^{13}	U^{23}
S1	0.02138 (14)	0.02425 (15)	0.01794 (14)	-0.00207 (12)	0.00249 (10)	-0.00047 (11)
S2	0.02718 (16)	0.02462 (15)	0.02126 (15)	-0.00051 (13)	0.00451 (12)	0.00042 (12)
07	0.0483 (7)	0.0228 (5)	0.0284 (5)	-0.0016 (5)	0.0067 (5)	-0.0006 (4)
O3	0.0446 (6)	0.0249 (5)	0.0219 (5)	0.0038 (5)	0.0047 (4)	0.0000 (4)
N2	0.0196 (5)	0.0189 (5)	0.0255 (5)	-0.0014 (4)	0.0029 (4)	0.0000 (4)
O2	0.0372 (6)	0.0288 (5)	0.0225 (5)	-0.0006 (4)	0.0055 (4)	-0.0059 (4)
N1	0.0198 (5)	0.0266 (6)	0.0352 (6)	-0.0001 (4)	0.0037 (5)	0.0005 (5)
01	0.0341 (6)	0.0512 (7)	0.0225 (5)	-0.0180 (5)	0.0087 (4)	-0.0030 (5)
O4	0.0250 (5)	0.0474 (7)	0.0343 (6)	-0.0012 (5)	-0.0036 (4)	0.0024 (5)
O5	0.0398 (6)	0.0412 (7)	0.0275 (5)	-0.0149 (5)	0.0103 (5)	-0.0031 (5)
O6	0.0545 (8)	0.0298 (5)	0.0286 (5)	0.0002 (5)	0.0116 (5)	-0.0078 (4)
C3	0.0247 (6)	0.0278 (6)	0.0241 (6)	-0.0011 (5)	0.0015 (5)	-0.0018 (5)
C2	0.0252 (6)	0.0316 (7)	0.0234 (6)	0.0017 (5)	0.0052 (5)	0.0003 (5)
C5	0.0221 (6)	0.0232 (6)	0.0279 (6)	0.0029 (5)	0.0040 (5)	0.0030 (5)
C1	0.0243 (6)	0.0297 (7)	0.0320 (7)	-0.0002 (6)	0.0068 (5)	-0.0057 (6)
C4	0.0251 (6)	0.0347 (8)	0.0273 (7)	0.0015 (6)	0.0019 (5)	0.0049 (6)
08	0.0297 (6)	0.0652 (9)	0.0419 (7)	0.0035 (6)	-0.0015 (5)	0.0122 (7)
C10	0.0301 (8)	0.0244 (7)	0.0494 (10)	0.0011 (6)	0.0071 (7)	0.0036 (6)
C6	0.0234 (7)	0.0330 (8)	0.0467 (9)	-0.0006 (6)	0.0029 (6)	0.0045 (7)
C9	0.0468 (11)	0.0280 (8)	0.0661 (13)	0.0109 (8)	0.0110 (10)	0.0070 (8)
C8	0.0408 (10)	0.0490 (11)	0.0707 (15)	0.0220 (9)	0.0123 (10)	0.0172 (11)
C7	0.0211 (7)	0.0548 (12)	0.0698 (14)	0.0061 (8)	0.0050 (8)	0.0140 (11)

Geometric parameters (Å, °)

S1—O4	1.4347 (13)	С3—Н3В	0.9700
S1—O2	1.4438 (11)	C2—C1	1.507 (2)
S1—O3	1.4754 (11)	C2—H2A	0.9700
S1—O1	1.5553 (12)	C2—H2B	0.9700

S2—O8	1.4378 (14)	C5—C6	1.377 (2)
S2—O6	1.4387 (12)	C5—C10	1.380 (2)
S2—O7	1.4647 (12)	C1—H1C	0.9700
S2—O5	1.5542 (12)	C1—H1D	0.9700
N2—C5	1.4799 (18)	C4—H4A	0.9700
N2—C2	1.5027 (19)	C4—H4B	0.9700
N2—C3	1.5041 (18)	C10—C9	1.388 (2)
N2—H2	0.9100	C10—H10	0.9300
N1—C4	1.485 (2)	C6—C7	1.383 (2)
N1—C1	1.491 (2)	С6—Н6	0.9300
N1—H1A	0.9000	С9—С8	1.373 (3)
N1—H1B	0.9000	С9—Н9	0.9300
O1—H1	0.8200	C8—C7	1.383 (3)
О5—Н5	0.8200	С8—Н8	0.9300
C3—C4	1.507 (2)	С7—Н7	0.9300
С3—НЗА	0.9700		
04-\$1-02	115 31 (8)	C1—C2—H2A	109.4
04 - 51 - 02	111.75 (7)	N2-C2-H2B	109.1
0^{2} 1^{2} 0^{3}	110.49(7)	C1 - C2 - H2B	109.1
02 - 51 - 01	108.60 (8)	$H_2 \Delta (C_2 - H_2 B)$	109.1
0^{2} 1^{-1} 0^{1}	104.35(7)	C_{6} C_{5} C_{10}	100.0 122 13 (15)
03-81-01	104.55(7) 105.60(7)	C6-C5-N2	117 99 (13)
08-52-06	115 46 (9)	C10-C5-N2	119.87 (13)
08-52-07	111.29 (8)	N1_C1_C2	109.67(12)
06-82-07	110.95 (7)	N1-C1-H1C	109.07 (12)
08-52-05	110.93(7) 107.90(8)	$C_2 - C_1 - H_1C$	109.7
06-52-05	107.50 (8)	N1 - C1 - H1D	109.7
07-82-05	105.08 (7)	C_{2}	109.7
C_{5} N2 C2	111 93 (11)	H_1C $-C_1$ $-H_1D$	109.7
$C_{5} = N_{2} = C_{2}$	112.96 (11)	N1 - C4 - C3	100.2 109.71 (12)
$C_2 = N_2 = C_3$	109 52 (11)	N1 - C4 - H4A	109.71 (12)
$C_2 = N_2 = C_3$	107.52 (11)	C_{3}	109.7
$C_2 = N_2 = H_2$	107.4	N1 C4 H4R	109.7
$C_2 = N_2 = H_2$	107.4	$\Gamma = C_4 = \Pi_4 D$	109.7
$C_3 = N_2 = M_2$	107.4		109.7
$C_4 = N_1 = C_1$	111.13 (12)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	108.2
C_{1} N1 H1A	109.4	$C_{5} = C_{10} = C_{9}$	110.29 (17)
$C_1 = N_1 = H_1 R_1$	109.4	$C_{0} = C_{10} = H_{10}$	120.9
C1 N1 H1P	109.4	C5C6C7	120.9
	109.4	$C_{5} = C_{6} = C_{7}$	110.74(17)
	100.5	C_{3}	120.6
S1_01_11	109.5	$C^{2} = C^{2} = C^{1}$	120.0 120.22(18)
S2	109.5	$C_{8}^{8} = C_{9}^{8} = C_{10}^{10}$	120.33 (18)
$N_2 = C_3 = C_4$	109.89 (12)	C10 C0 U0	119.8
$N_2 = C_3 = H_3 A$	109.7	C10-C9-H9	119.8
$C_4 - C_5 - \Pi_5 A$	109.7	$C_{2} = C_{2} = C_{1}$	120.30 (18) 110.7
	109.7	$C_{2} = C_{0} = C_{0}$	119./
	109.7	C^{0}	119./
$\Pi SA - C S - \Pi SB$	100.2	$C_{0} = C_{1} = U_{1}$	119.95 (18)
N2	110.98 (12)	Uð	120.0

supplementary materials

N2—C2—H2A	109.4	С6—С7—Н7	120.0	
Hydrogen-bond geometry (Å, °)				
D—H···A	<i>D</i> —Н	$H \cdots A$	$D^{\dots}A$	D—H··· A
O1—H1···O3 ⁱ	0.82	1.80	2.6140 (17)	172
O5—H5…O7 ⁱⁱ	0.82	1.80	2.6066 (18)	169
N1—H1A····O2 ⁱⁱⁱ	0.90	2.23	2.8636 (19)	128
N1—H1A····O3 ^{iv}	0.90	2.30	3.0279 (19)	138
N1—H1B…O3	0.90	2.14	2.9251 (18)	145
N1—H1B····O2 ⁱ	0.90	2.35	2.9892 (18)	128
N2—H2…O7	0.91	2.02	2.8216 (16)	146
N2—H2····O6 ⁱⁱ	0.91	2.32	2.9037 (17)	122
C1—H1C…O8	0.97	2.59	3.500 (2)	156
C1—H1D····O2 ⁱ	0.97	2.60	3.113 (2)	114
C3—H3A···O6 ⁱⁱ	0.97	2.42	2.949 (2)	114
С3—Н3В…О4	0.97	2.59	3.513 (2)	159
С6—Н6…О7	0.93	2.55	3.246 (2)	132
С10—Н10…О4	0.93	2.60	3.520 (2)	170
Symmetry codes: (i) x , $-y+3/2$, $z-1/2$; (ii) <i>x</i> , <i>-y</i> +1/2, <i>z</i> +1/2; (iii)	-x+2, y-1/2, -z+3/2; (iv) -x+2, -y+1, -z+1.	

Fig. 1

